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ON A FUNDAMENTAL DAMPING LAW FOR FUEL SLOSHING 

By Henry A. Cole, Jr . 
Ames Research Center 

SUMMARY 

Two-dimensional measurements of damping of o s c i l l a t i n g  p l a t e s  i n  water are 
found t o  co r re l a t e  with a power l a w  of Cauchy number and geometrical param- 
e t e r s .  These r e s u l t s  are used t o  develop an equation f o r  pred ic t ion  of fuel-  
s losh damping by r ing  b a f f l e s  i n  cy l ind r i ca l  tanks f o r  s i t ua t ions  where b a f f l e  
thickness and l i q u i d  surface e f f e c t s  are small. The predic t ions  a re  shown t o  
be i n  excel lent  agreement with data  f o r  both s m a l l  and la rge  tanks.  

INTRODUCTION 

Fuel-slosh damping by r ing  b a f f l e s  i n  cy l ind r i ca l  tanks has been inves t i -  
gated extensively i n  recent  years,  both theo re t i ca l ly  and experimentally. 
survey of damping measurements obtained i n  various experiments shows many 
apparent discrepancies.  The purpose of t he  present  repor t  i s  t o  present  a 
mathematical model f o r  fuel-s losh damping which br ings a l l  of t he  r e s u l t s  
together and provides a l o g i c a l  b a s i s  f o r  pred ic t ion  of damping i n  fu l l - s ca l e  
tanks.  

A 

The most widely used damping equation a t  present  i s  the  one obtained by 
Miles ( r e f .  1) which i s  based on experiments of Keulegan and Carpenter ( r e f .  2 ) .  
This equation has been used i n  pred ic t ing  damping i n  tanks from 1 t o  8 f e e t  i n  
diameter (refs. 3, 4, and 5 ) .  
with experimental data have varied from 2.25 t o  4.5 f o r  various tank s izes .  

However, t h e  coef f ic ien ts  needed t o  cor re la te  

Another method f o r  pred ic t ing  damping proposed ( r e f .  6) using data  
obtained by o s c i l l a t i n g  two-dimensional p l a t e s  i n  t h e  f l u i d .  
were an extension of t he  Keulegan and Carpenter data  i n  t h a t  t he  experiments 
were conducted on l a rge r  p l a t e s  a t  higher ve loc i t i e s .  Although t h i s  technique 
showed good co r re l a t ion  with r ing  damping i n  la rge  tanks,  it showed e r r o r s  of 
t h e  order of a f ac to r  of 2 when extrapolated t o  small tanks i n  the  range of t h e  
data  of Keulegan and Carpenter. 

The da ta  obtained 

During t h e  recent  review of fuel-sloshing work, the  bas ic  da ta  of re fer -  
ences 2 and 6 w e r e  found t o  be consis tent  under the  damping l a w  developed i n  
t h e  following sect ions.  

NOTATION 

A double amplitude of motion a t  b a f f l e  edge 

a cy l ind r i ca l  tank rad ius  
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acce lera t ion  of vehicle,  g 

baffle thickness 

maxi” veloci ty ,  f t / s e c  

ve loc i ty  of sound 

chord of b a f f l e  measured perpendicular t o  the  tank w a l l  

amplitude of motion of t h e  l i q u i d  surface a t  the  tank w a l l  

damping r a t i o  

damping r a t i o  of tank without b a f f l e  

densi ty  

frequency of o s c i l l a t i o n  , radians/sec 

MEASURED TWO-DIMENSIONAL DAMPING FORCES 

The damping data of references 2 and 6 were reduced t o  baffle-damping force 
pe r  u n i t  chord width of t h e  b a f f l e  and were p l o t t e d  aga ins t  amplitude-to-width 
r a t i o .  
damping force at  constant values of amplitude-to-width r a t i o .  Constant 
amplitude-to-width r a t i o  w a s  chosen as a parameter f o r  reasons of dimensional 
s imi la r i ty .  This procedure i s  consis tent  w i t h  t he  f indings of Keulegan and 
Carpenter t h a t  a per iod parameter correlated t h e i r  data (period parameter i s  
equal t o  the  amplitude-to-width r a t i o  mult ipl ied by K/2).  The u n i t  damping 
force  values a r e  shown p l o t t e d  on logarithmic sca les  on f igu re  1. It may be 
seen tha t  the  data very nearly f a l l  on s t r a i g h t  l i n e s  w i t h  a slope of 1.75. 
This i s  qui te  remarkable s ince the  data were obtained by d i f f e ren t  methods, 
with p l a t e s  which d i f fe red  g rea t ly  i n  s i ze  (1/2 t o  12 i n . ) ,  and over a veloc- 
i t y  range t h a t  varied by an order of magnitude. 

The r e su l t i ng  curves were then in te rpola ted  t o  obtain values of u n i t  

Curves of constant ve loc i ty  are shown on f igu re  2. It may be seen t h a t  
s t r a i g h t  l i n e s  with a slope of -0.4 f i t  t h e  data qui te  w e l l .  Consequently, 
t he  data from the  two references which f a l l  within t h e  amplitude-to-width 
r a t i o  of 1/4 t o  3 can be closely represented by the  power l a w  
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'0.4 
F/w = O.O03(AW) 1*75(A/~)  

DEVELOPMENT OF THE DAMPING EQUATION 

The damping force  equation of t he  previous sec t ion  i s  obviously not com- 
p l e t e  because t h e  dimensions of the  constant must s a t i s f y  dimensional similar-  
i t y .  
coef f ic ien t  form: 

Equation (6) of reference 6 may be used t o  reduce equation (1) t o  

(A/w)-' 
-0.25 

CD = 11.4V 

From the  conditions of s imi l a r i t y  ( r e f .  7), it i s  known t h a t  the  constant 
m u s t  be some funct ion of t h e  Reynolds number, Cauchy number (Mach number 
squared), and the  cav i t a t ion  parameter which satisfies dimensional s imi l a r i t y .  
The answer t o  t h i s  question may be obtained from f igu re  7 of reference 6 which 
shows measured drag coef f ic ien ts  i n  water a t  temperatures of TO0 and 212' F. 
The pa r t i cu la r  curve which provides the  key i s  f o r  a 6-inch chord a t  an 
amplitude-to-width r a t i o  of 1/2. 
of the  product of a length times a veloci ty .  
from 1 t o  0.284 cent ipoise  by heating the  w a t e r  (densi ty  va r i a t ion  0.998 t o  
0.958), t he  curve does not change appreciably. 
dent of Reynolds number. The temperature change a l s o  causes t h e  vapor pressure 
t o  vary from 0.34 t o  1-47 lb/sq in.; so, since the  curve does not change appre- 
ciably,  cav i ta t ion  e f f e c t s  can be ruled out. The ve loc i ty  of sound, on the  
other hand, remains r e l a t i v e l y  constant (4700 t o  3120 f t / s e c )  with the  temper- 
a tu re  increase,  and thus can be introduced i n t o  the  equation without dis turbing 
the  cor re la t ion .  We assume, therefore ,  t h a t  t he  process must depend so le ly  on 
the  Cauchy number. 

This curve drops off rap id ly  with an increase 
However, when v iscos i ty  i s  varied 

Hence, t h e  process i s  indepen- 

When the  speed of sound i s  introduced i n t o  equation (2), 

(A/w) - O O 4  

-0.25 
CD = 1.38(v/vS) (3) 

This equation appl ies  only t o  osc i l l a to ry  flow and t o  a l imi ted  range of 
amplitude-to-width r a t i o s  since it does not approach the  s teady-state  drag 
coe f f i c i en t  of 2 and since f o r  l a rge  amplitudes it i s  unl ike ly  tha t  the  e f f e c t s  
would be t h e  same (because the  vor t ices  shed would have d iss ipa ted  by the  time 
the  b a f f l e  reversed i t s  pa th ) .  Although it might seem unl ikely t h a t  compress- 
i b i l i t y  would be an important f ac to r  i n  p l a t e s  which have such sma l l  ve loc i t i e s ,  
it should be remembered t h a t  the l o c a l  ve loc i t i e s  can be exceedingly high a t  
t h e  edge of t he  p l a t e ,  and it i s  t h i s  region which has t h e  l a r g e s t  influence on 
t h e  shedding of t h e  vor t ices .  

By subs t i tu t ing  equation (3 )  i n t o  equation (13) of reference 6, one may 
obtain t h e  equation fo r  t he  damping r a t i o  of a cy l ind r i ca l  tank: 
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or 

i n  which pang/K corresponds t o  Cauchy number. The f a c t  t h a t  t he  coe f f i c i en t  
i s  nearly 1 and i s  dimensionless ind ica tes  t h a t  t h e  equation very nearly repre- 
sen ts  the  fundamental l a w  of damping f o r  t he  conditions being considered. 

On t h e  basis of equation (4), it may be seen t h a t  Cauchy number as w e l l  as 
geometric parameters should be maintained f o r  proper scal ing of fue l -  sloshing 
experiments. Several  i n t e re s t ing  predict ions may be made from th is  equation. 
If the  s i z e  of the tank were increased by a f ac to r  of 10, t h e  damping r a t i o  
would decrease by 25 percent .  If a rocket were t o  acce lera te  t o  5 times grav- 
i t y ,  t he  damping r a t i o  would decrease by 18 percent .  
changed from water t o  l i q u i d  oxygen, t h e  damping would decrease by 12 percent .  
Unfortunately, t he re  a r e  not enough data t o  ve r i fy  t h e  equations under a l l  of 
these  various conditions.  However, information on scal ing does exist and w i l l  
be used f o r  comparison i n  t h e  following sect ion.  
equation w i l l  a l s o  be shown f o r  comparison. 

If t h e  l i q u i d  w e r e  

Predict ions by the  Miles' 
This equation is: 

Note t h a t  the coef f ic ien t  of 3 i s  the  one i n  Miles' o r ig ina l  paper. 

COMPARISON WITH MEASURFD DAMPING I N  CYLINDRICAL TANKS 

The data from which t h e  damping equation w a s  derived were obtained from 
I n  r e fe r -  

For example, increasing the  thickness  of t h e  
It w a s  a l s o  

t h i n  f la t  p l a t e s  o s c i l l a t i n g  i n  a d i rec t ion  normal t o  the  p l a t e s .  
ence 6, p l a t e s  of other shapes w e r e  invest igated and t h e i r  effect iveness  rela- 
t i v e  t o  t h i n  p l a t e s  w a s  shown. 
baffles could reduce their  effect iveness  as much as 50 percent.  
shown i n  reference 6 tha t  the  proximity of the p l a t e s  t o  the  f l u i d  surface 
could influence the  effect iveness  of t h e  ba f f l e s .  These e f f e c t s  i n  various 
experiments may account f o r  t h e  w i d e  range of coef f ic ien ts  obtained f o r  t h e  
$tiles' equation (2.83 i n  r e f .  5 ,  2.25 t o  4.5 i n  r e f .  3).  Since surface and 
baffle thickness e f f e c t s  are not included i n  equations (4) and ( 5 ) ,  they 
should not be applied without appropriate correct ions t o  s i t ua t ions  where 
these e f f e c t s  a r e  la rge .  

To t es t  the  damping equations, damping measurements i n  both small and 
la rge  tanks were selected f o r  comparison. 
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3-Foot-Diameter Tank 

The tank and technique used f o r  measuring damping are described i n  r e fe r -  
ence 6. 
w a s  ground sharp t o  represent  zero thickness.  
r i g i d  with no apparent f l e x i b i l i t y  . 

The b a f f l e  w a s  made of s t e e l ,  0.0625 inch th ick ,  and the  outer edge 
The b a f f l e  w a s  therefore  qui te  

The r e s u l t s  of t h e  damping measurements a re  shown i n  f igu re  3. It may be 
seen t h a t  equation (4) f i t s  the  experimental po in t s  very w e l l  u n t i l  surface 
e f f e c t s  become important. Equation ( 5 )  a l s o  f i t s  qui te  w e l l  and only fa l l s  
s l i g h t l y  below equation (4) 
l a w  of equation (4), the measurements of reference 6 very accurately p red ic t  
t he  damping of a r ing  b a f f l e  i n  a small tank. 

Hence, it may be seen t h a t  under the new w i n g  

95-Inch-Diameter Tank 

D a t a  f o r  a r e l a t i v e l y  la rge  tank were obtained from reference 3 and a r e  
These data  were selected because the  b a f f l e  w a s  a t  a presented i n  f igu re  4. 

depth where surface e f f e c t s  should be small, and the  l i p  b a f f l e  w a s  near ly  
equivalent t o  a f la t  p l a t e  a s  shown i n  reference 6. 
t i o n  (4) shows excel lent  agreement with t h e  data  a t  low amplitudes and even 
p red ic t s  t h e  sharp r i s e  i n  damping.. A t  amplitudes above 2 inches, t he re  i s  
considerable s c a t t e r  i n  the  data  and it i s  d i f f i c u l t  t o  judge the  agreement. 
Equation (5) i s  a l s o  shown on t h e  f igu re  f o r  comparison, and it may be seen 
t h a t  it fa l l s  considerably below t h e  experimental data  a t  small amplitudes. 
It should be noted t h a t  t h e  depth of t he  f l u i d  i n  this  experiment w a s  only 1.1 
times the  tank rad ius  and t h a t  equations (4) and (5) a r e  only va l id  f o r  cases 
where the  depth of f l u i d  i s  grea te r  than t h e  tank radius .  Hence, t he  compari- 
son shown here i s  near t he  l i m i t  of appl ica t ion  of t he  equations where t h e  
e r r o r  i s  estimated t o  be of t he  order of 20 percent.  If the  t h e o r e t i c a l  
curves a re  revised downward by t h i s  amount, t he  comparison with the  data  
favors  equation (4) 

It may be seen t h a t  equa- 

On the  b a s i s  of t h e  comparisons i n  a small and la rge  tank i n  which surface 
and b a f f l e  thickness  e f f e c t s  a r e  small, it i s  concluded t h a t  equation (4) 
accurately p red ic t s  not only t h e  t rends but  a l s o  t h e  magnitude of fue l - s losh  
damping. 
e f f e c t  which t h e  addi t ion  of t he  Cauchy number has on t h e  predicted damping 
t rends.  The difference between these damping l a w s  would be much l a rge r  i n  pre-  
d i c t ing  t h e  damping of various f l u i d s  i n  l a rge  tanks i n  accelerated f l i g h t .  
The comparisons shown here do not cover such conditions. A large-scale  t e s t  
i n  accelerated f l i g h t  i s  needed t o  e s t a b l i s h  t h e  f u l l  scope of equation (4).  

The comparisons with Miles' equation a r e  made t o  demonstrate t he  

CONCLUSION 

A fuel-s losh damping l a w  has been found which co r re l a t e s  data  f o r  a two- 

When applied t o  damping of ring b a f f l e s  i n  cy l ind r i ca l  tanks where 
dimensional p l a t e  o s c i l l a t i n g  i n  w a t e r  i n  t h e  amplitude-to-width range from 
1/4 t o  3. 
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thickness  and surface e f f e c t s  are small, t h e  l a w  shows exce l len t  cor re la t ion  
with damping measured i n  a 36-inch and a 95-inch-diameter tank. 
of these comparisons, it i s  concluded t h a t  fuel-s losh damping depends on t h e  
Cauchy number and geometric parameters and i s  r e l a t i v e l y  independent of 
Reynolds number and cavi ta t ion  under t h e  conditions f o r  which t h e  data  were 
obtained. The damping equation provides pred ic t ions  f o r  f l u i d s  other than 
water, f o r  accelerated motion, and f o r  la rge  tanks,  bu t  su f f i c i en t  da ta  are not 
ava i lab le  f o r  es tab l i sh ing  the  limits of appl icat ion.  

On t h e  b a s i s  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  Aug. 26, 1965 
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